skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shollenberger, Lisa M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding variations in the routes by which wild animals gain and lose water is challenging, and common methods require longitudinal sampling, which can be prohibitive. However, a new approach usesΔ′17OBW(Δ′17O of animal body water), calculated from measurements ofδ′17O andδ′18O in a single sample, as a natural tracer of water flux.Δ′17OBWis promising, but its relationship to organismal variables such as metabolic rate and water intake have not been validated. Here, we continuously measured oxygen influxes and effluxes of captive deer mice (Peromyscus maniculatus), and manipulated their water intake and metabolic rate. We used these oxygen flux data to predictΔ′17OBWfor the mice and compared these model predictions withΔ′17OBWmeasured in blood plasma samples. As expected,Δ′17OBWpositively correlated with drinking water intake and negatively correlated with metabolic rate. All predictedΔ′17OBW(based on measured oxygen fluxes) values differed from measuredΔ′17OBWvalues by <30 per meg (mean absolute difference: 11 ± 9 per meg), suggesting high accuracy for this modelling approach because studies currently report a range of 300 per meg forΔ′17OBWamong mammals, birds and fish. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026